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PURPOSE. We investigated whether perceptual learning in adults with amblyopia could be
enabled to transfer completely to an orthogonal orientation, which would suggest that
amblyopic perceptual learning results mainly from high-level cognitive compensation, rather
than plasticity in the amblyopic early visual brain.

METHODS. Nineteen adults (mean age ¼ 22.5 years) with anisometropic and/or strabismic
amblyopia were trained following a training-plus-exposure (TPE) protocol. The amblyopic
eyes practiced contrast, orientation, or Vernier discrimination at one orientation for six to
eight sessions. Then the amblyopic or nonamblyopic eyes were exposed to an orthogonal
orientation via practicing an irrelevant task. Training was first performed at a lower spatial
frequency (SF), then at a higher SF near the cutoff frequency of the amblyopic eye.

RESULTS. Perceptual learning was initially orientation specific. However, after exposure to the
orthogonal orientation, learning transferred to an orthogonal orientation completely.
Reversing the exposure and training order failed to produce transfer. Initial lower SF training
led to broad improvement of contrast sensitivity, and later higher SF training led to more
specific improvement at high SFs. Training improved visual acuity by 1.5 to 1.6 lines (P <
0.001) in the amblyopic eyes with computerized tests and a clinical E acuity chart. It also
improved stereoacuity by 53% (P < 0.001).

CONCLUSIONS. The complete transfer of learning suggests that perceptual learning in amblyopia
may reflect high-level learning of rules for performing a visual discrimination task. These rules
are applicable to new orientations to enable learning transfer. Therefore, perceptual learning
may improve amblyopic vision mainly through rule-based cognitive compensation.
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Amblyopia is a developmental visual disorder caused by early
abnormal binocular visual experience (e.g., strabismus and

anisometropia) that disrupts the development of neural
circuitry in the visual cortex. It is an ideal model for
understanding when and how brain plasticity may be harnessed
for recovery of visual function lost. There is a widespread belief
that amblyopia is irreversible beyond 6 to 7 years of age (the
upper limit of the sensitive period).1 However, studies have
reported that perceptual learning, a process in which training
improves discrimination of basic visual features, can improve
adolescent and adult amblyopic vision.2–8 These results, along
with neurophysiological findings that the adult visual cortex
retains a certain amount of plasticity,9–11 raise hope that
perceptual learning may be able to take advantage of the
cortical plasticity to improve amblyopic vision.

Similar to normal perceptual learning, amblyopic perceptual
learning is at least partially and sometimes completely specific
to the trained orientation3,12,13 (also see Figs. 2–4 of the present
study). Many researchers take orientation specificity as
evidence that perceptual learning reflects plasticity in early
visual cortical areas14–16 where neurons are most selective for
orientation.17,18 Others assume that perceptual learning is
based on reweighting the responses of neurons activated by the
trained stimulus, in that the brain assigns greater weights to the

responses of more relevant visual neurons to improve
readout.19–21 Here the reweighting results in more precise
stimulus templates, which also leads to orientation specificity.22

However, recently we developed a training-plus-exposure
(TPE) technique to demonstrate that orientation-specific
perceptual learning in foveal vision can transfer completely to
a new orientation in normal vision, provided that the observers
are exposed to the new orientation through an irrelevant
task.23 This finding, along with our demonstration that
perceptual learning can transfer completely to untrained retinal
locations,24–26 indicates that normal perceptual learning may
occur in high-level brain areas beyond the orientation-selective
and retinotopic visual cortex, and it may be through a process
in which the brain first learns the rules for reweighting the
visual inputs and can then apply these rules to other
orientations after exposure to them.

This finding also raises fundamental issues to the under-
standing of amblyopic perceptual learning. Does perceptual
learning improve amblyopic vision through similar rule-based
high-level mechanisms, which could be regarded as cognitive
compensation for the disrupted visual cortical functions in
amblyopia? Or does training indeed rewire the amblyopic visual
cortex to restore at least part of the functionality, or improve
the response reweighting for a limited set of neurons activated
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Stimuli

The experiments consisted of two training stages (Fig. 1). The
first used a low spatial frequency (mean¼2.4 cycles per degree
[cpd], SD¼0.7 cpd) that was approximately 2.7 octaves below
the cutoff frequency of the amblyopic eye, and the second
used a higher spatial frequency (mean¼8.2 cpd, SD = 1.8 cpd)
that was approximately 0.9 octaves below the same cutoff
frequency of the amblyopic eye. Various visual functions were
assessed before and after each training stage.

In the first low spatial frequency training stage, a pair of
identical and collinear Gabors (Gaussian windowed sinusoidal
gratings) centered on a mean luminance screen background
were used for contrast discrimination, Vernier, and orientation
discrimination tasks (Fig. 2a). The two Gabors had the same
spatial frequency, standard deviation (one wavelength), con-
trast (80%), orientation (horizontal or vertical), and phase
(1808) unless otherwise specified. The center-to-center dis-
tance between the two Gabors was five wavelengths. The
Vernier offset was always perpendicular to the orientation of
the Gabors and was achieved by shifting each Gabor half of the
total offset in opposite directions. In contrast discrimination
trials the alignment of two Gabors was randomly jittered by
650 arcmin (62 times the mean wavelength). In orientation
discrimination trials the two Gabors were always aligned, and
the phase, which was equal in two Gabors, was randomized

from 08 to 1808 for every presentation. The stimulus was
viewed through a circular opening (diameter¼178 at a viewing
distance of 2 m) of a black cardboard that covered the monitor
surface. This helped mask the straight edges of the monitor
that the observers might use as cues for orientation and Vernier
judgments. The viewing distance was 1.6 m.

In the second training stage the center-to-center distance of
the two high spatial frequency Gabors was four wavelengths.
Other stimulus parameters were unchanged except when
specified. In addition, a single Gabor (368 or 1268 orientation)
with a random phase was used for orientation and contrast
discrimination training (Fig. 4). The contrast for the orientation
discrimination task was 80%. The viewing distance was 2 m.

Visual Function Assessments

Visual Acuity. Single-E acuity was measured with a
tumbling letter E (a minimal luminance black letter on a full-
luminance white background). Crowded-E acuity was tested
with a tumbling E letter target surrounded by four same-sized
tumbling E flankers in the four cardinal directions, with an
edge-to-edge gap of one letter size. The crowded-E acuity may
be influenced by the crowding effect. The stroke and opening
width of the E letter was one fifth of the letter height. Besides
computerized single-E and crowded-E acuities, visual acuity
was also measured with a clinical E acuity chart, the standard







was 0.81 6 0.15, not significantly different from TI ¼ 1 (P ¼
0.12). These results indicate that exposing the nonamblyopic
eye to an orthogonal orientation can enable the transfer of
contrast learning to this orthogonal orientation in the
amblyopic eye.

In the TPE procedure described above, training was
followed by orthogonal orientation exposure. A third group
(N ¼ 7) performed reversed-order TPE (rTPE), in which the
orthogonal orientation exposure preceded training, to test the
order effect of TPE. Specifically, in the initial exposure phase
the amblyopic eye was exposed to the orthogonal orientation
through Vernier learning (DVer_ori2, MPI ¼ 40.4 6 4.7%, P <
0.001; range, 24.3%–55.0%; Fig. 3), which slightly reduced the
contrast threshold from 13.7 6 1.3% to 12.6 6 1.0% at the
same orientation (DCon_ori2, MPI ¼ 6.7 6 3.3%, P ¼ 0.044;









also rule out the roles of cross talks between these orthogonal
neurons even if such putative cross talks exist.

The complete learning transfer rather favors a higher-level
learning process that is more general and versatile than simple
response reweighting. Indeed, reweighting of specific orienta-
tion signals would make learning more specific, rather than
less so.22 Therefore, amblyopic perceptual learning, just like
normal perceptual learning, is more likely a rule-based
cognitive learning process.23 In the amblyopic perceptual
learning case the brain learns the rules to reweight the noisy
visual inputs due to amblyopia. These general rules can be
applied to other orientations with proper training procedures
to enable learning transfer, so as to compensate the deficits of
the amblyopic visual system.

An important outcome of the training, consistent with
many previous studies of perceptual learning in amblyopia,7,8

is the transfer of improvement to untrained tasks: contrast
sensitivity, visual acuity, and stereoacuity. Our results show that
TPE improved contrast sensitivity in the amblyopic eyes. The
initial low spatial frequency training resulted in an improve-
ment over a broad range of spatial frequencies, consistent with
previous reports.5,30 However, the further improvement
achieved through the subsequent high spatial frequency
training was limited to the trained and nearby high frequencies
(Fig. 5). Interestingly, Huang et al.5 reported a broad bandwidth
of improvement after training their observers to detect a high
spatial frequency grating (near the cutoff spatial frequency of
the amblyopic eye). Together these results suggest a broad
improvement through either low or high spatial frequency
training. However, on top of this broad improvement,
subsequent training at high spatial frequencies can further
improve the sensitivities of the high spatial frequency
channels, where amblyopic visual deficits are most pro-
nounced. Similarly, visual acuity improvement after the initial
low spatial frequency training is uncorrelated with pretraining
acuity, but the overall improvement after the subsequent high
spatial frequency training is strongly correlated with pretrain-
ing acuity (Figs. 6a, 6b). Like contrast sensitivity, the acuity
improvement appears to be a broad learning effect initially, and
then a high spatial frequency specific effect.

Our study may have important clinical implications.
Perceptual learning has not yet entered clinical practice for
the treatment of amblyopia. One of the main reasons is the
well-known ‘‘curse’’ of specificity. Our TPE results point to
important principles in the design of perceptual learning as a
treatment that can readily generalize, and we show that some
of the burden can be borne by the fellow nonamblyopic eye.

SUMMARY

We demonstrated that perceptual learning of various visual
discrimination tasks in adults with amblyopia can transfer
completely to an untrained orthogonal orientation with TPE.
These results suggest that perceptual learning improves
amblyopic vision, at least in large measure, through high-level
cognitive compensation, rather than through early plasticity in
the amblyopic visual brain.
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